Ministry of Education and Science of Ukraine Dnipro University of Technology

FACULTY OF INFORMATION TECHNOLOGIES DEPARTMENT OF COMPUTER SYSTEMS SOFTWARE

"APPROVED"

Head of Department

Udovik I.M.

..______2018

WORK PROGRAM OF THE ACADEMIC DISCIPLINE

"Computers, algorithms and programming"

Field of study	
Specialty	
Academic degree	
Academic program	
Language of study	

18 Production and Technology185 Oil and Gas Engineering andTechnologyBachelorOil and Gas Engineering and TechnologyEnglish

Prolonged: for 20 __ / 20__ academic year ____ (_____) "__" __ 20__. for 20 __ / 20__ academic year ____ (_____) "__" __ 20__.

> Dnipro NTU "DP" 2018

Work program of the academic discipline "Computer science, algorithmic and programming" for bachelor's specialty 185 "Oil and Gas Engineering and Technology" / UCUSP / NTU "Dnipro Polytechnic" Department of UCUSP. - DA: NTU «DP» 2018 - 13 p.

Autors:

Assoc. L. Kabak

The work program regulates:

- key goals and objectives;

- the disciplinary learning outcomes generated through the transformation of the intended learning outcomes of the degree program;

- the content of the discipline formed according to the criterion "disciplinary learning outcomes";

- the discipline program (thematic plan by different types of classes);

- distribution of the discipline workload by different types of classes;

- an algorithm for assessing the level of achievement of disciplinary learning outcomes (scales, tools, procedures and evaluation criteria);

- criteria and procedures for evaluating the academic achievements of applicants by discipline;

- the contents of the educational and methodological support of the discipline;

The work program is designed to implement a competency approach in planning an education process, delivery of the academic discipline, preparing students for control activities, controlling the implementation of educational activities, internal and external quality assurance in higher education, accreditation of degree programs within the specialty.

CONTENTS

1 DISCIPLINE OBJECTIVES

In the educational and professional programs of the Dnipro University of Technology specialty 185 "Oil and gas engineering and technology", the distribution of program learning outcomes (NRN) for the organizational forms of the educational process is done. In particular, the following learning outcomes are attributed to the discipline B7 discipline "Computers, algorithms and programming »":

CL5	Demonstrate skills to use information and communication technologies for solving
	specific engineering problems associated with the implementation of the basic
	technologies of oil and gas production, drilling, transportation and storage of oil and gas.
SR5	To apply mathematical methods to determine the specific values of process parameters gas
	wells, preparation of oil and gas industry and main gas, hazonaftoshovysch other system
	elements hazonaftopostachannya
SR6	Use modern software design and operational parameters calculation processes of mining,
	drilling, transportation and storage of oil and gas

The objective of discipline - formation of sustainable knowledge and learning basic concepts of modern science theories, algorithms and programming. Study of general principles and methods of application of modern science theory, algorithms and programming.

The implementation of the objective requires transforming program learning outcomes into the disciplinary ones as well as an adequate selection of the contents of the discipline according to this criterion.

Code	Disciplinary learning outcomes (DRN)					
NRN	IRN DRN code content					
B7	CL5-B7-1	To be able to use modern information and communication technologies for solving specific engineering problems associated with the implementation of the basic technologies of oil and gas production, drilling, transportation and storage of oil and gas.				
В7	SR5- B7-1	By using this knowledge to develop algorithms to solve mathematical problems concerning the definition of specific values of process parameters gas wells, preparation of oil and gas industry and main gas, hazonaftoshovysch other system elements hazonaftopostachannya				
B7	SR6- B7-1	Develop software applications in a VB macros and Excel MS Office for design and operational parameters calculation processes of mining, drilling, transportation and storage of oil and gas				

2 INTENDED DISCIPLINARY LEARNING OUTCOMES

3 BASIC DISCIPLINES

Subjects	The acquired learning outcomes
The discipline "	computer science, algorithms and programming" is taught in the
1st semester accord	ing to the curriculum, as additional requirements for basic
subjects not establis	hed. Interdisciplinary connections: study course " computer
science, algorithms a	nd programming "Based on knowledge obtained from subjects
previously studied in	secondary school.

4 WORKLOAD DISTRIBUTION BY THE FORM OF EDUCATIONAL PROCESS ORGANIZATION AND TYPES OF CLASSES

	cload ars	Distribution by forms of education , <i>hours</i>					
Type of		Full-time		Part-time		Distance	
classes	Worł hou	Classes (C)	Individual work (IW)	Classes (C)	Individual work (IW)	Classes (C)	Individual work (IW)
lecture	35	11	24				
practical	50	16	34				
laboratory	0/5	5	-				
workshops	90	32	58				
TOGETHER	35	11	24				

5 DISCIPLINE PROGRAM BY TYPES OF CLASSES

Ciphers	Turnes and taning of turining agains	of
DRN	Types and topics of training sessions	components,
		hours
	LECTURES	32
	1. Subject Information science (general concept). The purpose	6
CI 5 D7 1	and objectives of informatics. Key concepts of computer science.	
CLJ-D/-1	Basic concepts of computer science. Types of information. Number	
	systems.	
	Topic 2. General description of the collection, transmission,	6
	processing and storage of data.studying computer architecture	
CI 5 D7 1	designed for automatic processing of data; computer systems	
CLJ-D/-1	interface (methods and management techniques hardware and	
	software); software development; data conversion (conversion	
	techniques and methods of data structures).	
	3. Subject hardware and software implementation of	6
	information processes. The architecture of modern information	
CI 5 B7 1	systems, data collection, formalization of data coming from different	
CL3-D7-1	sources to the same shape to make them comparable with each other;	
	sorting of data; grouping data - combining data given grounds to	
	increase ease of use; archiving.	
	4. Subject algorithmic computing tasks. Algorithm and its	7
	properties. Means presentation algorithms. Rule circuitry. The types	
SR5- B7-1	of computational processes. Linear, branched and cyclic computing	
SKS D7 1	processes. Examples of algorithms and their performance.	
	Characteristics of algorithmic programming languages. The	
	dependence of the algorithm used programming languages	
	Topic 5. Creating software applications for office systems using	7
	macros. Introduction to the programming language Visual Basic.	
SR6- B7-1	Key Features algorithmic language Visual Basic. Alphabet language.	
	Description data. Standard data types. Arithmetic expressions. Data	
	types defined by the user. Operators. The structure of the program.	
	Style recording algorithms language Visual Basic.	
	PRACTICAL TRAINING	58
CL5-B7-1	Workshop 1. Basics of algorithms and algorithms basic properties of	7
	different types of computational processes	

Ciphers DRN	hers RN Types and topics of training sessions			
	Workshop 2.Study WINDOWS OS and working methods in its	7		
	environment. Study of standard office applications and OS WINDOWS			
	Workshop 3. Internet. Finding information on the Internet and work with e-mail	7		
	Workshop 4. Working with antivirus and Recorders.	7		
CI 5-B7-1	Find and remove viruses on your PC. Working with archive files by			
SR5- B7-1	means of the program WinRAR			
SR5- B7-1, SR6- B7-1	Workshop 5. Initial setup of the word processor Microsoft Word.	7		
SRO D7 1	Entering symbols and formulas.			
	Workshop 6. Working with graphic objects, creating graphic	7		
	headers. Creating tables and charts based on them			
	Workshop 7.Basic concepts of spreadsheets MS Excel. Calculation	7		
	functions and their construction schedules			
	Workshop 8. Solving algebraic, transcendental and systems of	7		
	equations			
	ADVICE / TEST	5		
	TOTAL	90		

6 KNOWLEDGE PROGRESS TESTING

Certification of student achievement is accomplished through transparent procedures based on objective criteria in accordance with the University Regulations "On Evaluation of Higher Education Applicants' Learning Outcomes".

The level of competencies achieved in relation to the expectations, identified during the control activities, reflects the real result of the student's study of the discipline.

6.1 GRADING SCALES

Assessment of academic achievement of students of the Dnipro University of Technology is carried out based on a rating (100-point) and institutional grading scales. The latter is necessary (in the official absence of a national scale) to convert (transfer) grades for mobile students.

Rating	Institutional
90 100	Excellent
74 89	Good
60 73	Satisfactory
0 59	Failed

The scales of assessment of learning outcomes of the NTUDP students

Discipline credits are scored if the student has a final grade of at least 60 points. A lower grade is considered to be an academic debt that is subject to liquidation in accordance with the Regulations on the Organization of the Educational Process of NTUDP.

6.2 DIAGNOSTIC TOOLS AND EVALUATION PROCEDURES

The content of diagnostic tools is aimed at controlling the level of knowledge, skills, communication, autonomy, and responsibility of the student according to the requirements of the National Qualifications Framework (NQF) up to the 7th qualification level during the demonstration of the learning outcomes regulated by the work program.

During the control activities, the student should perform tasks focused solely on the demonstration of disciplinary learning outcomes (Section 2).

Diagnostic tools provided to students at the control activities in the form of tasks for the intermediate and final knowledge progress testing are formed by specifying the initial data and a way of demonstrating disciplinary learning outcomes.

Diagnostic tools (control tasks) for the intermediate and final knowledge progress testing are approved by the appropriate department.

Type of diagnostic tools and procedures for evaluating the intermediate and final knowledge progress testing are given below.

INTERMEDIATE CONTROL			FINAL ASSESSMENT		
training sessions	diagnostic tools	procedures	diagnostic tools	procedures	
lectures	control tasks for	task during lectures	comprehensive	determining the average	
	each topic		reference work	results of intermediate	
practical	control tasks for	tasks during	(CCW)	controls;	
	each topic	practical classes			
	or individual task	tasks during		CCW performance during	
		independent work		the examination at the	
		_		request of the student	

Diagnostic and assessment procedures

During the intermediate control, the lectures are evaluated by determining the quality of the performance of the control specific tasks. Practical classes are assessed by the quality of the control or individual task.

If the content of a particular type of teaching activity is subordinated to several descriptors, then the integral value of the assessment may be determined by the weighting coefficients set by the lecturer.

Provided that the level of results of the intermediate controls of all types of training at least 60 points, the final control can be carried out without the student's immediate participation by determining the weighted average value of the obtained grades.

Regardless of the results of the intermediate control, every student during the final knowledge progress testing has the right to perform the CDF, which contains tasks covering key disciplinary learning outcomes.

The number of specific tasks of the CDF should be consistent with the allotted time for completion. The number of CDF options should ensure that the task is individualized.

The value of the mark for the implementation of the CDF is determined by the average evaluation of the components (specific tasks) and is final.

The integral value of the CDF performance assessment can be determined by taking into account the weighting factors established by the department for each NLC descriptor.

6.3 EVALUATION CRITERIA

The actual student learning outcomes are identified and measured against what is expected during the control activities using criteria that describe the student's actions to demonstrate the achievement of the learning outcomes.

To evaluate the performance of the control tasks during the intermediate control of lectures and practicals the assimilation factor is used as a criterion, which automatically adapts the indicator to the rating scale:

$$O_i = 100 a / m$$
,

where a - number of correct answers or significant operations performed according to the solution standard; m - the total number of questions or substantial operations of the standard.

Individual tasks and complex control works are expertly evaluated using criteria that characterize the ratio of competency requirements and evaluation indicators to a rating scale.

The content of the criteria is based on the competencies identified by the NLC for the Bachelor's level of higher education (given below).

General criteria for achieving learning outcomes 7th qualification for LDCs (BA)

Integral competence is the ability to solve complex problems and specialized practical problems in a particular area of professional activities or in a learning process that involves the use of certain theories and methods of the relevant scientific areas and characterized by complexity and conditions uncertainty.

descriptors NLC Requirements for knowledge, communication, autonomy and responsibility		Indicator evaluation
	Knowledge	
 Conceptual 	- A great - proper, reasonable, sensible. Measures the	95-100
knowledge acquired	presence of: - conceptual knowledge; - a high degree of	
during the training and	state ownership issues; - critical understanding of the main	
professional activities,	theories, principles, methods and concepts in education and	
including some	careers	
knowledge of modern	A non-gross contains mistakes or errors	90-94
achievements;	The answer is correct but has some inaccuracies	85-89
 critical 	A correct some inaccuracies but has also proved insufficient	80-84

descriptors NLC	Requirements for knowledge, communication,	Indicator
descriptors NLC	autonomy and responsibility	evaluation
understanding of the	The answer is correct but has some inaccuracies, not	74-79
main theories,	reasonable and meaningful	
principles, methods,	A fragmentary	70-73
and concepts in	A student shows a fuzzy idea of the object of study	65-69
education and careers	Knowledge minimally satisfactory	60-64
	Knowledge unsatisfactory	<60
	Ability	
 solving complex 	- The answer describes the ability to:	95-100
problems and	- identify the problem;	
unforeseen problems in	- formulate hypotheses;	
specialized areas of	- solve problems;	
professional and/or	- choose adequate methods and tools;	
training, which	- collect and interpret logical and understandable	
involves the collection	information;	
and interpretation of	- use innovative approaches to solving the problem	
information (data),	The answer describes the ability to apply knowledge in	90-94
choice of methods and	practice with no blunders	
tools, the use of	The answer describes the ability to apply knowledge in	85-89
innovative approaches	practice but has some errors in the implementation of a	
	requirement	00.04
	The answer describes the ability to apply knowledge in	80-84
	practice but has some errors in the implementation of the	
	The one-way describes the shility to apply knowledge in	74.70
	reaction but has some errors in the implementation of the	/4-/9
	three requirements	
	The answer describes the ability to apply knowledge in	70-73
	practice but has some errors in the implementation of the	10-13
	four requirements	
	The answer describes the ability to apply knowledge in	65-69
	practice while performing tasks on the model	05 07
	A characterizes the ability to apply knowledge in	60-64
	performing tasks on the model, but with uncertainties	00 01
	The level of skills is poor	<60
	Communication	
• report to specialists	- Fluent problematic area. Clarity response (report)	95-100
and non-specialists of	Language - correct:	
information, ideas,	net:	
problems, solutions and	clear:	
their experience in the	accurate:	
field of professional	$ \log ic$	
activity;	expressive	
• the ability to form an	concise	
effective	Communication strategy:	
communication	coherent and consistent development of thought	
strategy	availability of own logical reasoning:	
	relevant arguments and its compliance with the provisions	
	defended;	
	the correct structure of the response (report);	

descriptors NLC	Requirements for knowledge, communication,	Indicator
I	autonomy and responsibility	evaluation
	correct answers to questions;	
	appropriate equipment to answer questions;	
	the ability to draw conclusions and formulate proposals	
	Adequate ownership industry issues with minor faults.	90-94
	Sufficient clarity response (report) with minor faults.	
	Appropriate communication strategy with minor faults	
	Good knowledge of the problems of the industry. Good	85-89
	clarity response (report) and relevant communication	
	strategy (total three requirements are not implemented)	
	Good knowledge of the problems of the industry. Good	80-84
	clarity response (report) and relevant communication	
	strategy (a total of four requirements is not implemented)	
	Good knowledge of the problems of the industry. Good	74-79
	clarity response (report) and relevant communication	
	strategy (total not implemented the five requirements)	
	Satisfactory ownership issues of the industry. Satisfactory	70-73
	clarity response (report) and relevant communication	
	strategy (a total of seven requirements not implemented)	
	Partial ownership issues of the industry. Satisfactory clarity	65-69
	response (report) and communication strategy of faults	
	(total not implemented nine requirements)	
	The fragmented ownership issues of the industry.	60-64
	Satisfactory clarity response (report) and communication	
	strategy of faults (total not implemented 10 requirements)	
	The level of poor communication	<60
Autonomy and responsibility		
 management actions 	- Excellent individual ownership management	95-100
or complex projects,	competencies focused on:	
responsible for	1) management of complex projects, providing:	
decision-making in	- exploratory learning activities marked the ability to	
unpredictable	independently evaluate various life situations, events, facts,	
conditions;	detect and defend a personal position;	
 responsible for the 	- the ability to work in a team;	
professional	- control of their own actions;	
development of	2) responsibility for decision-making in unpredictable	
individuals and/or	conditions, including:	
groups	- justify their decisions the provisions of the regulatory	
• the ability to continue	framework of sectoral and national levels;	
study with a high	- independence while performing tasks;	
degree of autonomy	- lead in discussing problems;	
	- responsibility for the relationship;	
	3) responsible for the professional development of	
	individuals and/or groups that includes:	
	- use of vocational-oriented skills;	
	- the use of evidence from independent and correct	
	reasoning;	
	- possession of all kinds of learning activities;	
	4) the ability to further study with a high degree of	
	autonomy, which provides:	
	- degree possession of fundamental knowledge;	

descriptors NLC	Requirements for knowledge, communication, autonomy and responsibility	Indicator evaluation
	- independent evaluation judgments;	
	- high level of formation of general educational skills;	
	- search and analysis of information resources	
	Confident personality possession competency management	90-94
	(not implemented two requirements)	
	Good knowledge management competencies personality	85-89
	(not implemented three requirements)	
	Good knowledge management competencies personality	80-84
	(not implemented the four requirements)	
	Good knowledge management competencies personality	74-79
	(not implemented six requirements)	
	Satisfactory ownership of individual competence	70-73
	management (not implemented seven requirements)	
	Satisfactory ownership of individual competence	65-69
	management (not implemented eight claims)	
	The level of autonomy and responsibility fragmented	60-64
	The level of autonomy and responsibility poor	<60

7 TOOLS, EQUIPMENT, AND SOFTWARE

Technical training tools via multimedia software. Distance learning platform Moodle.

8 RECOMMENDED SOURCES

1. Пушкарь О. І.Інформатика: комп'ютерна техніка. Комп'ютерні технології: підручник для студентів вищих навчальних закладів // К. : Видавничий центр "Академія", 2012. – 704 с.

2. Войтюшенко Н.М., Остапець А.І. Інформатика і комп'ютерна техніка Навчальний посібник для студентів вищих навчальних закладів // К.: Центр учбової літератури, 2009. – 564 с. ISBN 978-966-364-825-5

3. Баженов В.А., Лізунов П.П., Резніков А.С., Кравчук С.О., Шонін В.О. Інформатика. Комп'ютерна техніка. Комп'ютерні технології: Підручник. 4-те вид. // К.: Каравела, 2012. - 496 с.

4. Вітюк О. В., Гуралюк А. Г., Москалькова Н. М., Шикова О. М. Основи інформатики. //К.: МАУП, 2015. – 104 с. ISBN 966-608-515-1

5. Виткуп М.Е., Петренко В.В., Информатика и компьютернаятехника MS Office в примерах и задачах с методикойихрешения: Учебноепособие// К.:Центр «Методика-информ»., 2002.- 351с..

6. Степанов В. П. Ковріжних І. П. Основи алгоритмізації та програмування: навч. посібн. для самостійної роботи студентів. // Х.: Вид ХНЕУ, 2007. – 160 с.

7. Федько В. В. Основи інформаційних технологій. Текстовий редактор MS Word 2010 : навч. посібн. // В. В. Федько , В. І. Плоткін. – Х. : Вид. ХНЕУ, 2012. – 288 с.

8. Сингаевская Г. И. Функции в Microsoft Office Excel 2017// К. : Изд. "ДИАЛЕКТИКА", 2011. – 672 с.

9. Антоненко В. М., Мамченко С.Д., РогушинаЮ. В. Сучасні інформаційні системи і технології: управління знаннями : навч. посібник // Ірпінь : Нац. університет ДПС України, 2016. – 212 с.

10. Воронін А. М., Зіатдінов Ю. К., Климова А. С. Інформаційні системи прийняття рішень: навчальний посібник. // К. : НАУ-друк, 2009. – 136с.

11. Галузинський Г. П., Денісова О. О., Писаревська Т. А. Інформаційні системи у бізнесі. Практикум для індивідуальної роботи: навч.- метод. посіб. для самост. вивч. Дисципліни. // К. : КНЕУ, 2008. – 524с.

12. Годун В.М. ОрленкоН.С., Сендзюк М. А. Інформаційні системи і технології в статистиці: навч. посіб. // В.М. Годун,; за ред. В.Ф. Ситника. – К.: КНЕУ, 2003. – 267 с.

13. Грицунов О. В. Інформаційні системи та технології: навч. посіб. для студентів за напрямом підготовки «Транспортнітехнології» // Харк. нац. акад. міськ. госп-ва. – Х.: ХНАМГ, 2010. – 222 с.

14. Пономаренко В. С., Золотарьова І. О., Бутова Р. К. та ін. Інформаційні системи в економіці : навч. посібник // Х. : Вид. ХНЕУ, 2011. – 176 с.

15. ДобровольськаЛ. О., Черевко О. О. Інформаційні системи в промисловості : навчальний посібник // Маріуполь : ПДТУ, 2014. – 238 с.

Інформаційні ресурси мережі Internet

1. https://docs.microsoft.com/ru-ru/office/vba/library-reference/concepts/getting-started-with-vba-in-office

Educational edition

WORK PROGRAM OF THE ACADEMIC DISCIPLINE "Informatics, algorithmization and programming" 185 "Oil and gas engineering and technology"

Prepared for publication Dnipro University of Technology. Certificate of registration in the State Register, control number 1842 49005, Dnipro, Dmytro Yavornytskoho Ave. 19